Wheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8.

نویسندگان

  • Mark Mazzola
  • Yu-Huan Gu
چکیده

ABSTRACT The induction of disease-suppressive soils in response to specific cropping sequences has been demonstrated for numerous plant-pathogen systems. The role of host genotype in elicitation of the essential transformations in soil microbial community structure that lead to disease suppression has not been fully recognized. Apple orchard soils were planted with three successive 28-day cycles of specific wheat cultivars in the greenhouse prior to infestation with Rhizoctonia solani anastomosis group (AG)-5 or AG-8. Suppressiveness to Rhizoctonia root rot of apple caused by the introduced isolate of R. solani AG-5 was induced in a wheat cultivar-specific manner. Pasteurization of soils after wheat cultivation and prior to pathogen introduction eliminated the disease suppressive potential of the soil. Wheat cultivars that induced disease suppression enhanced populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward R. solani AG-5 and AG-8, but cultivars that did not elicit a disease suppressive soil did not modify the antagonistic capacity of this bacterial community. When soils were infested prior to the initial wheat planting, all cultivars were uniformly susceptible to R. solani AG-8. However, when pathogen inoculum was added after three growth-cycles, wheat root infection during the fourth growth-cycle varied in a cultivar specific manner. The same wheat cultivar-specific response in terms of transformation of the fluorescent pseudomonad community and subsequent suppression of Rhizoctonia root rot of apple was observed in three different orchard soils. These results demonstrate the importance of host genotype in modification of indigenous saprophytic microbial communities and suggest an important role for host genotype in the success of biological control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulation of rhizosphere bacterial communities to induce suppressive soils.

Naturally occurring disease-suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, significant difficulty has been realized in the transfer of this knowledge into ...

متن کامل

Journal of Nematology

Naturally occurring disease-suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, significant difficulty has been realized in the transfer of this knowledge into ...

متن کامل

Detecting Migrants in Populations of Rhizoctonia solani Anastomosis Group 3 from Potato in North Carolina Using Multilocus Genotype Probabilities.

ABSTRACT The relative contribution of migration of Rhizoctonia solani anastomosis group 3 (AG-3) on infested potato seed tubers originating from production areas in Canada, Maine, and Wisconsin (source population) to the genetic diversity and structure of populations of R. solani AG-3 in North Carolina (NC) soil (recipient population) was examined. The frequency of alleles detected by multilocu...

متن کامل

Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing

Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also infl...

متن کامل

Cultural management of microbial community structure to enhance growth of apple in replant soils.

ABSTRACT Apple replant disease typically is managed through pre-plant application of broad-spectrum soil fumigants including methyl bromide. The impending loss or restricted use of soil fumigants and the needs of an expanding organic tree fruit industry necessitate the development of alternative control measures. The microbial community resident in a wheat field soil was shown to suppress compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 92 12  شماره 

صفحات  -

تاریخ انتشار 2002